

RPT7050D

RPT7050D uses Rakon's proprietary Pluto+™ ASIC, and a patented dual crystal resonator design, resulting in high frequency stability over a wide temperature range, paired with a better than 0.2ppb/g acceleration sensitivity.

Features

- g-sensitivity typically ≤0.2ppb/g
- Excellent frequency stability over temperature performance
- Extended operating temperature up to -55/105°C
- Variants tailored to specific customer requirements

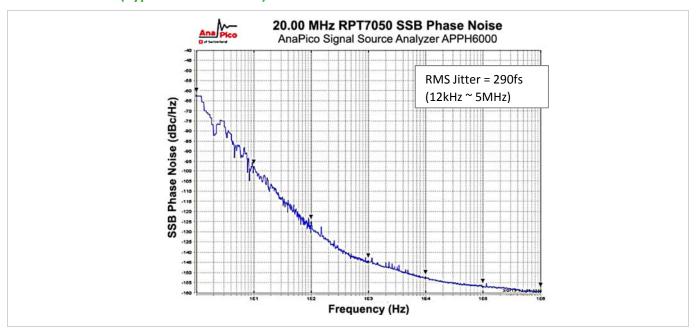
Applications

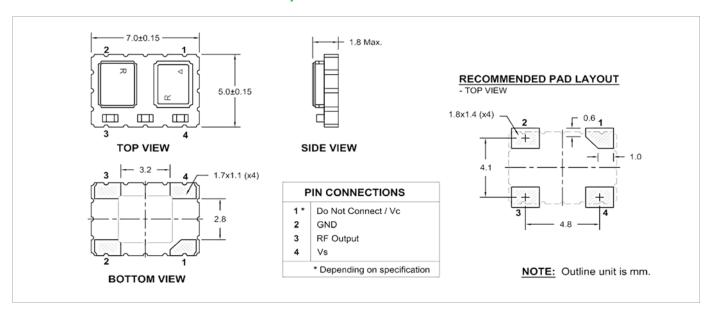
- Defense
- Guidance
- Avionics
- Precision GNSS/Positioning
- Communications

7.0 x 5.0 x 1.8 mm

Standard Specifications

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
Nominal frequency	16		40	MHz	
Frequency calibration			±1	ppm	At 25°C±2°C, at time of shipment reference to nominal frequency
Reflow shift			±1	ppm	After 1 hour recovery at 25°C
Frequency stability over temperature			±0.2 – 2.5	ppm	Reference to (F _{MAX} + F _{MIN})/2
Operating temperature range ¹	-40		85	°C	Operating temperature range over which temperature stability is measured
Slope over temperature ($\Delta F/\Delta T$)	20		200	ppb/°C	Temperature ramp 1°C/minute
Supply voltage stability		±0.1		ppm	±5% variation
Load sensitivity		±0.1		ppm	±5% variation
Long term stability (≤26MHz)			±1 ±3	ppm ppm	1 year 10 years
Long term stability (>26MHz)			±2 ±5	ppm ppm	1 year 10 years
Acceleration sensitivity		0.2	0.5	ppb/g	Gamma vector over operating temperature range
Supply voltage, V _{CC} Current (C/Sine) Current (HCMOS)	2.5	2.5 4	6	V mA mA	±5%, standard values are 3.0, 3.3 and 5.0V
Output voltage – C/Sine Load resistance Load capacitance	0.8	10 10		V kΩ pF	Peak to peak voltage
Output voltage (HCMOS) Voltage level low (VoL) Voltage level high (VoH) Rise and fall time Duty cycle Load	0.9 45	15	0.1 8 55	Vs Vs ns % pF	Measured with Vcc = 3.3V Measured at 50% level
Control voltage range	0.5		2.5	V	Vc
Frequency tuning ≤26MHz >26MHz	±5 ±7			ppm ppm	
Slope		+7		ppm/V	
Input resistance	100			kΩ	
Modulation bandwidth	1			Hz	


 $^{^{\}rm 1}$ Wider temperature ranges available at certain frequencies.


Environmental Specifications

Parameter	Description
Acceleration	MIL-STD 202, method 212A, duration 1 minute, peak acceleration X1 & X2 axes 10,000g, Y1 & Y2 axes 20,000g, Z1 & Z2 axes 10,000g
Vibration, high frequency	MIL-STD 202, method 204D, 1.5 hours of swept sinusodal vibration of $20g / 1.5$ mm pk-pk amplitude from 10Hz to 2000Hz in each of three mutually perpendicular axes. Total sweep time 4.5 hours.
Shock (specified pulse)	MIL-STD 202, method 213B, half sine pulse, duration 1ms, 3 shocks in each direction along three mutually perpendicular axes (18 shocks total), X1 & X2 axes 10,000g, Y1 & Y2 axes 30,000g, Z1 & Z2 axes 5,000g.

SSB Phase Noise (Typical value at 25°C)

Model Outline and Recommended Pad Layout

